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Dipanimento di Finica, UniversitP di Bari, Italy and lstituto Naiion.de di Fisiea Nucleare 
Sezione di Bari, Italy 
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Abstract. A spherical like model of a D-dimensional random surface embedded in d- 
dimensional Euclidean space is studied in detail. The embedding weight depends on an 
attractive term between the nearest neighbours and on a repulsive one between some of 
the next to the nearest neighbours of the network. The repulsive term mimics an extrinsic 
curvature energy for surface configurations. Crumpled and flat regimes are found, and, if 
D S  2, only the former survives in the thermodynamic limit. The model can be seen as the 
d - m  limit of a more realistic model where the l i d  corrections stabilize the flat regime 
in the thermodynamic limit at least for D = 2 .  

1. Introduction 

Crystalline membranes are D-dimensional networks of particles with fixed connectivity 
embedded into the d-dimensional Euclidean space. They can be regarded as the simplest 
generalization of linear polymers [l]. The recent interest [ 2 ]  in the study of crystalline 
membranes is due to the fact that, unlike linear polymers or fluid membranes, their 
elastic forces together with the bending energy can stabilize a low temperature flat 
phase [3]. At sufficiently high temperature there is a ‘crumpling transition’ [4,5] into 
a disordered phase with infinite Hausdorff dimension (crumpled phase). Numerical 
simulations [ 5 ]  indicate that such a phase transition occurs even for two-dimensional 
membranes at variance with standard two-dimensional systems with a continuous 
symmetry group (in the present case the rotation group of the embedding space). In 
other words the famous Mermin-Wagner 161 theorem does not hold in the case of 
crystalline membranes. 

The constraint of fixed connectivity is realized by assigning a d-dimensional coordin- 
ate Xi to each node i of a D-dimensional network, and a bond energy V(lXt-ql), 
diverging as IX, -Xjl goes to infinity. The total energy also includes a bending elastic 
term [7] whose strength is given by the rigidity constant k. The behaviour of k under 
renormalization due to thermal fluctuations is crucial for the existence of the flat phase. 
If for example V( r )  = 0 and the energy depends on the surface area (fluid membranes), 
then the rigidity k, in a model where the network is approximated by a continuous 
manifold, has been shown [4] to decrease on large scales and the flat phase does not 
exist in D = 2. The situation is different in crystalline membranes where an effective 
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long range interaction is generated, leading to a renormalized rigidity which grows UP 

on large scales, so that the crumpling transition is made possible [3]. 
Bi-dimensional membranes with solid internal order embedded in three-dimensional 

Euclidean space have been extensively studied by Monte Carlo simulations in [SI. The 
energy configuration was taken as 
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where the nodes i and j belong to a triangular network, n. is the unit vector normal 
to the a t h  triangle and Vis a potential between the nearest-neighbouring nodes. There 
is a rather clear evidence [SI for a crumpling transition at a given k, between a ‘low 
temperature’ ( k  > k,) flat phase when the membrane radius of gyration R grows linearly 
with the linear size L of the network and a ‘high temperature’ crumpled phase when 
R 2  - In L. In the model considered in [5] V( r )  = 0 when 1 < r < & and V( r )  = m 
otherwise (tethered membranes). However it is believed that the crumpling transition 
exists for a wide class of potentials. 

The aim of this paper is to investigate the existence of the crumpling transition in 
an explicitly solvable lattice model with a repulsive potential between the next to 
nearest neighbours substituting for the interaction between the normals of triangles. 
Such a choice appeared in the numerical simulations of [SI. 

In section 2 the model is defined and the linear chain case is solved. The bi- 
dimensional problem is treated in section 3, where the existence of a crumpled ‘regime’ 
and of a flat ‘regime’ will he found maintaining the size of the membrane as finite. 
The model proposed is analogous to the spherical model and, as such, it does not 
exhibit a phase transition in D = 2 when the size of the membrane becomes infinite. 
(A fluid membrane version of the spherical model, treating the surface as a continuum 
in the Monge representation, has been already discussed some time ago in [9]). A true 
phase transition exists for D = 3, and the corresponding critical behaviour will be 
discussed in section 4. In the last section the results will be commented and it will he 
observed that our model can be viewed as the d + m limit of a more physical model, 
just like the spherical model is equivalent to the O ( N )  model in the large N limit 
[ 101. Corrections of order l /d  can also be calculated by a straightforward generalization 
of the standard I /  N expansion. Finally the appendices contain technical details. 

2. The definition of the model and the D = 1 case 

The statistical mechanics of the embeddings of a D-dimensional network into R d  can 
be described by the Boltzmann weight e -” /Z  with 

where i and j are nodes of the network and Xi E Rd. The symbols (. . .) and <<. . . >> 
are respectively used to indicate the nearest neighbours and some of the next neighbours 
of the network, k is the rigidity constant and N is the total number of sites. The 
partition function Z includes a S function which fixes the centre of mass of the network 
and eliminates the infinite d-dimensional volume coming out from integration, due to 
the translational invariance of (1.1). 
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In the one-dimensional case the partition function is 

bN- l  1 2 <=o 

a2 N-1 xexp -- I: (Xj-xj+,)' -- I: (X,-Xj+,)2 

k B N-i 

+- (xi-xj+2)2-- I: (X,-X,)2 
N-i 

2 ;=o  2N i j = o  

where periodic boundary conditions (X,+N = X , )  will be considered. The term propor- 
tional to B is a source term for the radius of gyration (see e.g. (2.9)). The model can 
be seen as a realization of the spherical model, and, by the same arguments used by 

a2/d L<r,)/x,-~,14 in the limit d + m  (see section 5 ) .  The quartic term of the energy 
(2.1) can be interpreted as the compression energy due to ripples on the network (see 
[9] where the effect of such a term on the behaviour of the surface tension in fluid 
membranes has been studied). 

By applying the Hubbard-Stratonivich transformation to the quartic term in (2.2) 
the partition function can be rewritten in the following way 

S!i?!?!cy [I", it CII? be shewn cq.iv2!cnt ?e 2 made! With the quartic ix?eractian 

, 

2 i  2N i j  

and 

D ( m ;  z, p )  =2(b+2za) ( 1 -cos - 2 ~ ) - 2 k ( l - c o s ~ ) + 2 p .  (2.5) 

In the last step of (2.3) the Fourier series of X, has been introduced before performing 
the integration over the 'normal modes'. 

D( m ;  Re z )  is greater than zero for 
m = 1,. . . , N - 1, which is true if D( 1; Re z )  > 0. When N >> 1, 2 can be evaluated by 
applying standard saddle point methods to (2.3). The saddle point equation 
(df(z)/dr),,,=O gives (in the following b =  1) 

In (2.3) c is arbitrary as far as D( m ;  Re z ;  0) 

l+2iaa-4k+2k l-cos- 
N m - 1  ( N  (2.6) 
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which, in terms of x = ( 1  +2ia -4k)/2k, becomes 
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ki 
ad 2da2 

- (2k*-1+4k) 

=L 5' (1  + 
N m = i  N 

The condition D( 1; z )  > 0 leads to 

2.r 
N 

x +  1 -cos -> 0. 

The spatial configuration of the network will be described by the ratio R2/12,  where 
R is the mean squared radius of gyration 

and I is the link mean length 

(2.10) 

where nL is the number of the links of the network (which is N in the present case). 
Different 'phases' or regimes will be characterized by different behaviours of R2/12 as 
functions of N. 

From (2.2)-(2.5) and from the definitions (2.9) and (2.10) one gets 

and 

(2.12) 

where the saddle point equation has also been used. In calculating G(x) and A' the 
two cases x<< 1 (corresponding to i=(4k-1) /22 ,  which is the minimum value from 
the condition (2.8) when N+m)  and x =  1 will be separately considered. If x<< 1,  
G(x)  can be approximated by 

1 m 2 (N--1) /2  1 
G(x)=--  N 1 x+2m2m2/N2 = N Z  + ( m m )  2 

with I = Nm. The application of the theorem of residues gives 

G(x) = N ( t  coth f - 1)/2t2 

(2.13) 

(2.14) 
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so that 

1IJz if N 2 x > > l ( r + m )  
if N2x<< l(f+O). G(x) = { N/6 

(2.15a) 
(2.156) 

The saddle point equation (2.7) can now be solved giving estimates of the scales of k 
corresponding to various regimes. By inserting (2.15a) into (2.7) one obtains 

2d2a4 
X =  

k2(4k  - 1)2 (2.16) 

with the condition N-’<< x<< 1 eauivalent to 1 << k<< m. The scale k = m c o r r e s o o n d s  
to (2.156), as it can be easily seen from (2.7). The computation of R 2  is similar. Using 
k<< 

dN’ 1 
4k ,,=, (.rrm)2(t2+(7im)2) z p -  

2 ~ k ~  ( f2-3fcothf+3)=-  
dN3 
24 kr 3da4 

-__ - 

where (2.16) with k > > l  has also been used. Finally, from (2.12) and (2.17) 

1 << k << m. R2 2k2 
l 2  - 3da2 

A different situation occurs for x<O and 1 x 1 ~  1. From (2.7) 

where, from (2.8), f = N W <  F. In the limit f + P 

N 1  
G(x)=-- 

271 7 1 - f  

(2.17) 

(2.18) 

(2.19) 

(2.20) 

which, inserted into (2.71, gives k>>m. The mean squared radius of gyration, R 2 ,  
can be analogously calculated and 

k>>m 
R2 N 2  
12 -2712 (2.21) 

corresponding to the ‘flat regime’. Equation (2.18) corresponds to intermediate spatial 
configurations, while the totally crumpled regime comes out for x a  1, when 

(2.22) 

The corresponding saddle point equation gives k2lad = l/x, so that l 2  = d/2kr, and 

(2.23) 

The above results imply that at a given value of the rigidity k >> 1, the linear polymer 
is stretched on length scale of order k2.  This is also in accord with the general fact 
that the tangent vectors of a polymer develop long-range correlations only when the 
curvature parameter tends to infinity [ I l l  (for a new class of random walks with 
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curvature dependent action see [121). Since 1 2 = i / 2 a ,  at the flattening scale k-m 
the chain is near to an instability because 2- k (see (2.8); the same phenomenon 
occurs also at D = 2). The phenomenon can be related to a lack of scale invariance in 
the curvature term of (2.2). When the curvature energy is scale invariant the length of 
subsequent steps are uncorrelated and the mean interatomic distance I is independent 
of the curvature [12]. However, this discussion does not afflict the model of this paper, 
which has been introduced mainly to study the dependence of the persistence length 
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DE the rigidity k 

3. The random surface model 

3.1. Radius of gyration 

Let a D = 2 network consist of equilateral triangles joined at their edges, with the 
topology of a torus. On each side of the network (the opposite sides are identified) 
there will be L+ 1 vertices; vertices are specified by two integer coordinates ( n , ,  nz) 
with O s  n , ,  n 2 8  L. In the following L will be taken odd for simplicity. The couple of 
integers ( n , ,  nz)  will be abbreviated by a single index i, j ,  . . . , when no ambiguity arises 
(see figure 1). The symbol ((i, j ) )  will be used when i and j belong to two different 
triangies with a common side. T i e  partition function reads as 

(3.1) 

n, 

Figure 1. 
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with c arbitrary. The order of the integrations can be interchanged only if 

is strictly positive. The matrix (0,) 

6(b+a  Re z -  k )  i = j  

(3.3) 
-b-a  Rez  i, j nearest neighbours 

' k  i, j next-to-nearest neighbours i. otherwise 

D.. = 

has the eigenvalues D( m,,  m2) given by 

D ( m , ,  m2) = 6 ( b +  a Re z - k )  - 2 ( b +  a Re z )  

The Fourier transform U,,,,, of X,,, ,n2 is defined as 

in terms of which (3.2) becomes 
d 

X Q&X, = Z X I W , , , , ~ l z ~ ( m l ,  m2) 
ii m,.m2 * = I  

and all the eigenvalues D ( m ,  , m2) are positive if 

b + a Re z 
k 

3 -cos 4 7 r l L - 2  cos 27r/ L 
27r 

2-2  cos - L 

27r2 -3-- 
L2 

> 

Then the partition function becomes 

(3 .5)  

(3.7) 

(3.8) 

provided Re z verifies (3.7). The sum z' does not include the mode (m , ,  m2) = 0. The 
saddle-point equation gives 

where 

1 27r 
L 

(m,+2m,)-cos - ( m ,  -m2) 

257 27r 
L L m, -cos - m2-cos- ( m l + m 2 )  

(3.9) 

(3.10) 
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The expression of R2 can be obtained by introducing in (3.1) a source term as in (2.2). 
The saddle point approximation of R 2  is 

d 
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R2=,C  L ' D - ' ( m , ,  m2)iX=?.  (3.11) 

The flat regime will be obtained, as in the polymer case, carrying out the limit of the 
contour of integration in (3.8) towards the origin of the cut in the z-plane (see (3.7)). 
Therefore it is quite convenient to isolate in (3.11) the first pole, which defines the 
origin of the cut: 

m)+P(O,  1) 

with 

(3.13) 

The flat regime will correspond to O<xcc 1, while crumpled configurations occur at 
different scales of x. The treatment of (3.12) depends on the scale of x considered. 
For x 2  1 ,  the expansion of each term of (3.12) does not give positive powers of L (as 
it can be directly seen from (3.11)), and to extract terms growing with L from the 
double sum it is convenient to apply the Euler-MacLaurin summation formula, which 
gives (see appendix A): 

R2 = 1nL x a  1 
9 4  b + i a  -3k)  

(3.14) 

In the extreme case x >> L2,  the equations (3.13) and (3.9) respectively become 
i > > ( 3 k - b ) / a  and i=daL2/xk ,  so that k<< 1.  Since in all regimes 

. 
Z p -  

6 a  

from (3.13)-(3.15) one gets 

(3.15) 

(3.16) 

which is the extremely crumpled regime. On the other hand, when x<< 1, R 2  can be 
approximeted by 

(3.17) 
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while the Euler-MacLaurin formula is appropriate for studying the saddle-point 
equation, with the result 

4da a 
i--+constant - In L 

kx k 
x<< 1 (3.18) 

Equation (3.18) and I - (3k-b) /a  (see (3.13)) establish that k > > m  if xc< l/ln L. 
Hence 

(3.19) 

corresponding to the 'flat regime'. The scale 1 << x<c L2 can be shown to correspond to 
1 << k<< 

The above results imply that, at a fixed value of k, the membrane is stretched on 
a scale 5 -ek2. A suggestion coming from a renormalization group calculation in fluid 
membrane with bending energy [4] indicates a similar behaviour of 6. It should be 
stressed that the calculations presented here are exact and do not assume any scaling 
to hold a priori. 

with the behaviour of R2/12 intermediate between L2 and In L. 

3.2. The exponent y 

I ne entropy-exponent y is defined by - 

z - exp(c,L2+c,L+ (y-  1) In L + .  . . ) (3.20) 

and can be calculated in the crumpled phase, which is the only one surviving in the 
thermodynamic limit. Differently from c , ,  c,, . . . , y is believed to be independent of 
the connectivity of the network, while in general it depends on the topology and on 

non-trivial topology is embedded with a Gaussian weight (see [13]), the value found 
for y is [14] 

the shape of !he bcllndzry [!?!. For ex.amp!e, if I gene:.! cllr?.ed mz!!ifc!d with 

Dirichlet boundary conditions 
y - 1 = - x +  (3.21) 

where x is the Euler characteristic of the manifold. In the case considered bere; the 
use of the periodic boundary conditions should make y independent of the network 
connectivity, This is just what happens. In appendix B it is shown that the value y = 1, 
found on the triangular network, remains the same on a square regular hi-dimensional 
lattice. 

6 {:d Neumann boundary conditions 

2 2 en-n m m . s l + c  & w  n r t w o t r h d  notum& .,..,. .CL......,,". I I .._.I..__ .._... "..I 

A membrane with cylindric boundary conditions, has been studied in the simple case 
of a 'sausage' configuration. In this configuration the two bundaries of the network 
are contracted into two points separated along the y axis by a distance h, which is a 
measure of the stretching imposed on the membrane. 

For simplicity a model on a square regular lattice with L2 sites is considered. The 
repulsive interaction is between third neighbours (i.e. second neighbours aiong the 
axis) and the action is chosen in such a way to have the family of functions 

(3.22) 
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as an orthonormal system of eigenvectors. It is necessary to distinguish the value of 
R: and of 1: in the y direction from R: and 1: in the other direction. The calculations 
are similar to those previously seen, even if much more algebraically complicated [ 151, 
and only some distinctive aspects will be presented. As a consequence of the stretching, 
in the flat regime, the factor multiplying the L2 leading term of R://: is less than the 
corresponding factor calculated with periodic boundary conditions. The parameter h 
appears in the expression of R: and 1;. Keeping only the leading terms, the results are: 

G Gonnella and A Maritan 

x<< 1 
L2 h2L4 
kx x2 

R;-A-+B- (3.23a) 

x b l  (3.23b) 
1 1  
71 b+Z-4k 

R;-- 

where x is defined as in (3.13) and A, Bare positive numbers. The case x << 1 corresponds 
to the flat regime, as it will result after the division by /:- i. The saddle point equation 
is for x<< 1 (a = 1,  b = 0) 

h2 C4 +c2h2L2-0--  h2c3+- k = c , - + - + -  I n L  h2 20L2h2 
k L x 2  X xk (3.24) 

where the ci are positive constants. 

the leading term of the ratio R:/l: is still proportional to L2. 
Therefore k must he greater than the largest of and h2L2. Since i- L2h2/x2, 

4. The random solid model 

The D = 3  case is studied on a cubic regular lattice with the repulsive interaction 
between third neighbours (second neighbours along the axis). The partition function 
can be calculated as in the previous sections. The result is 

(4.la) 

3 271 3 471 

*=I L * = I  L 
D ( n i , , m 2 , m s ) = 6 ( b + z a - k ) - 2 ( b + z a )  cos-mm,+2k 1 cos-mP ( 4 . 1 ~ )  

The saddle-point equation is 

/D(m,,  m2, m3)i,=z (4.le) 

with 

(b+ a Re i ) / k  > 2(1 +cos 2711 L ) .  (4.2) 
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Similarly to the spherical model, in D = 3 the right-hand side of (4.le) is finite (for 
L + W )  when z approaches its limiting value (4k- b)/a given by (4.2). Therefore there 
exists a finite k, given by 

(4.3) 

that, when k <  k,, (4.le) admits a solution. The corresponding values of R2 can be 
easily shown to be constant (crumpled phase). A trick [I61 to see what happens when 
k >  k, is to rewrite (4.le) as 

(4.46) 

and to keep L temporarily finite. If (b  + i a ) / k  - P(0 ,  0 , i )  = I /  L’, then it is negligible 
in the denominator of (4.4a), the sum X” can be replaced by an integral, and, by using 
(4.3), the equation (4.4a) becomes 

. 6da b t i a  -‘ k, 4k,-b 
L3k(  k ‘) ‘ k 8 a ’  z=- -- (4.5) 

The only admissible solution (due to inequality (4.2)) of the quadratic equation (4.5) 
is Z=(4.4-b)/a which says !ha!, fer k >  kc, f<z)  2.d R2 BTP given by (4,!b)-(4,!d) 
with z = i = ( 4 k - b ) / a .  It comes out that lim,,,R2/(12L2) is finite f o r k >  k,. 

The critical exponent v describes the behaviour of the mass gap m2 = (b  + i a ) / k  -4 
near the phase transition. If k > k, m2 = 0, while if k s  k, 

m2-(k,-k)”. (4.6) 

The equations (4.le) and (4.3) imply that m2- (kc- k)’so that U = 1, as in the spherical 
model. 

5. Conclusions and perspectives 

We have presented an exactly soivabie modei of D-dimensionai discrete manifoids 
randomly embedded in the d-dimensional Euclidean space. The model allows us to 
calculate explicitly different regimes and to determine the crossover region between 
the crumpled and flat phases as  far as the linear size N I f D  of the manifold is large 
but finite. In particular for D = 2 this crossover region is located around the value 
(In N)”’ of the ‘rigidity constant’ k and thus even for macroscopic membranes it could 
stay at reasonable value of k 

The Hamiltonian (2.1) is a generalization of the Berlin-Kac spin model and it can 
be seen as the leading contribution in the I l d  expansion of the more realistic model 
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where now for simplicity the network is a square lattice. In order to show this result, 
one introduces the auxiliary field 'pe for each couple of nearest-neighbour sites and 
defines the new Hamiltonian 

G Gonnella and A Maritan 

which is such that 

(5.3) 

At variance with the model of the previous sections there is a field variable 'pV for 

By interchanging the order of integration of 'p's and X's, one gets 
each link instead of a single variable z. 

= 9'p e-"'X;*'~(x,) = 9'p edF(*) (5.4) I 1  I 
where Xc= Xr J J N  and in the large d limit one can apply the standard saddle point 
method. The homogeneous solution 6 of the saddle point equations aF/J'pe=O is 
given by 

n 4 - 2  cos(Z~m, lL)  - 2  cos(2~m,/L) e=- 1 
2L2 m i 0  D(m; b + @ a , k )  (5.5) 

where the D's are the eigenvalues of the quadratic part in the X of (5.2) when 'pV = +. 
It is easy to see that ( 5 . 5 )  is exactly analogous (3.9) in the square lattice with 

n = 2 a a  and 6 =,-/a finite constants in the d + m limit. 
Furthermore the free energy and other quantities, such as the mean square radius 

of gyration, tum out to be the same as the corresponding quantities already calculated 
for the model (2.1). 

Corrections to the leading order in the 1 l d  expansion can be done using methods 
of the reference [17]. This is what has been done in [ 181 for a continuous D-dimensional 
manifold. The most surprising thing is that for D >  2 - 2 1 d  there are the crumpled 
regime and the flat one surviving in the thermodynamic limit. Corrections of the order 
l l d  in the model (5.1) can be also calculated in a way similar (even if more complicated 
by the discreteness of the network) to the one developed in the second reference of 
[18 ]  and will be presented elsewhere. 

Acknowledgments 
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Appendix A. RZ in the crumpled regime 

The mean squared radius of gyration R2 can be written as (see ( 3 . 1 1 ) )  
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which, after repeated application of the Euler-MacLaurin summation formula, becomes 

1 

where B,, are the Bernoulli numbers. 
All the terms of (A2), except the double integral, remain finite in the L + m  limit. 

In order to show this result, the following approximations of the eigenvalues D(x,  y ) ,  
when L>>1, will be useful: 

D(-j--,T)-D(~,l)-D(O,~)-8(b+io-k) L-1 L-1 

2 ('43) 

D( 1 , l )  - (g) 6 ( b + i a  - 3 k )  

To show that terms such as L - ' J " ( ~ / D ( x ,  y ) )  (where J = J ,  or d =  J,)  are finite when 
L+m, it may be convenient to write 

where G,,(x, y )  is a sum of terms each of them containing n factors chosen between 
D -  D(x, y) and the derivatives of D in such a way that the total number ofderivations 
is n (this property can be easily shown by induction). When (x. y )  = ( 1 , l )  or (x, y )  = 
(0, l ) ,  one sees that D - l / L 2  and JD- 1/L. Each term of G . ( x , y )  contains powers 
of 1/L at least of order n. Indeed one considers the worst case when J J  with n > 1 
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has no powers of I /  L. A term with derivatives with highest order n - a  and with 2x 
factors of aD has the structure 
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(A5) (a'"-"' D ) ( a D ) 2 x ( a 2 D ) ( " / 2 1 - " D " - l - " - " / z  

when the number of insertions of D is minimum. The resulting total power of I/  L is 
2 n  - 2 - a  which is equal to or greater than n for a S n - 2, independently of x. Therefore 
the only case to be still considered is a = n - 1 corresponding to a term proportional 
io 

Terms such as L-2~(IL-1132dx a;(l/D(x,y)) can be analysed by also using (A4) .  
Since contributions growing with L could arise only from the lower integration limit 
when y = O  or y =  1 (see (A3)), the previously examined structure of the function 
G.(x, y )  and the approximated expressions of D(x, I), D(x, 0)  for xCC 1 can be used 
to show that 

- i,!L", w'nich compietes the proof, 

In similar ways all the other terms of (A2)  without derivatives can be shown to be 
finite when L + m except the double integral. In the new variables p, = (27r/L)x, p2 = 
(27r/L)(x/Z+y)Z/fi the double integral reads yL-l)/2 j (L - l ) /2  d x  dy- 1 

L2 1 D(x,Y) 

dp, I 1 p, lJS+ln(L-l l /LJ3 

p , / JS+4nlJSL dp2 D(P,, PJ 
-_ 

... L... 
WllerL- 

D(p,,  p2) = 6(b  + i a  - k )  - 2 ( b +  Za) cos p1+2 cos -p2 cos - 2 

c o s f i p , + 2 c o s - p , ~ 0 ~ ~ p ~  3 2 ) z 2 p 2 ( b + T a - 3 k ) .  (A8)  

Then 

1 
d x  dy- 

D(x, Y )  

2 
= c o n s t a n t + T  de dp3p2(b + f a  - 3 k )  

27r n/6 I /L  

In L+constant+O d f i  
97r ( b + i a - 3 k )  

_- 
which is the behaviour of R2 in the crumpled regime (see (3.14)).  

Appendix B. The y exponent on the triangular and on the square lattices in the 
crumpled regime 

The partition function can be evaluated in the saddle-point approximation. Formula 



Crumpled andflaf regimes in a random surface model 2001 

(3.8) gives 

where i is the real solution of the saddle-point equation (3.9) and 

(B2) 

The term proportional to In L in X' In D ( m , ,  m2) contributes to the value of y. The 
Euler-MacLaurin formula (A2) with In D(x, y) instead of l/D(x, y )  can be used to 
evaluate this contribution. 

All terms like a" In D(x, y )  and iY-')l2 dx[dy"-l' In D(x, y)] can be shown to he 
!ki:e i:: :he L+ m ! h i t  by the S B X C  argxxnts .sed fer the corresponding !erms in  
(A2). Indeed, for each term (n fixed), l/D(x, y) results in being to the power n instead 
of n + 1 as in (A4), and the effect of this change is compensated by the disappearance 
of the ayerall factor I /  L2 in front of the sum. 

Thelterms InD((L-1)/2, (L-l)/2), In D(O,(L-1)/2), In D(l , (L-l) /2)  are 
constant while 

z2 d 
2 L2 f(z)=--- X ' In D ( m , ,  m2) .  

lnD(l , l )=InD(O,1);=-2ln L. (83) 

Moreover 

d x I n D ( x , l ) =  dx ln  2(b+Ia-3k)  - (x2+x+1) r2 J, [ (2$ I 
-L(,,LdxIn[(x+&)z+&]-31n L+less divergent terms (B4) 
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In order to extract the term proportional to In Ll L2 it is convenient to differentiate 
with respect to L the integrals resulting from (B6) after the integration over p 2 .  The 
result is 

G Gonnella and  A Maritan 

(L-1112 (L-,112 

d x  dy In D(x, y )  - -3 In L+less divergent terms. (B7) I t  J-, 
Inserting (B3)-(B7) into (B2) gives 

x ' l n D ( m , ,  m J - 2 l n  L. 

Then, in the crumpled regime, the value of y, as defined in (3.16), is 

y=l. (BS) 
It is noteworthy that the same value of y is obtained on a square regular lattice. The 
calculation proceeds as before starting from (Bl )  and applying the Euler-MacLaurin 
formula, where now 

D(m,,  m2) =4(b+Za-  k ) - 2 ( b + i a )  

with ( b  + f a ) /  k >  2(1 +COS 2?r/L). 
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